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Abstract

Marine-based object detection in computer vision relies
on uncharacteristically controlled environments – particu-
larly with lighting, water clarity, and perspective. However,
this serves a problem for detection of species like fish in
real-world habitats. Moreover, due to perspective limitation
there is an increasing chance of occlusion that may sour ac-
curacy on models trained on controlled environments. The
following project addresses these issues by implenting a
novel data augmentation algorithm that can be paired with
classical object detection methods like YOLOv10. We use
the DeepFish data set – one that takes pictures of fish in
their habitats in various lighting conditions. After generat-
ing bounding boxes from DeepFish’s segmentation masks to
create a custom training set. Then, we propose an a psuedo-
simulated annealing based algorithm based on Deng et. al
[1] copy-paste data augmentation, improving model robust-
ness for crowded fish detection scenarios. We see that this
approach achieves better results compared to the baseline
model, testing on images annotated from live-stream data
in the Florida Keys.

1. Introduction

Using fish detection algorithms is a significant challenge
due to the most popular models being used for controlled re-
search or for fish farms. In natural environments, water clar-
ity, lighting conditions, and orientation inhibit these models
from generalizing.

There are some models in the literature that utilize
YOLO for fish detection, but do not do so on natural en-
vironments but use controlled environments like tanks or
fish farms instead [7]. Similarly, there are a small number
of studies that focus on natural environments, but very few
use CNN models. [site papers with natural environments
but not cnn] Moreover, the models in the literature do not
address the specific features of our test set that lead to de-
creased robustness (namely, interspersed crowding).

As a result, our aim is to address these limitations of
these models by training a YOLO-based detection model
using the DeepFish dataset [2], which contains images of
fish within their natural environment and with varying light-
ing conditions, generating bounding boxes from provided
segmentation data.

Through exploring the DeepFish dataset, there is an ad-
ditional limitation to the segmentation data used for train-
ing – there are too few fish in each image. Thus, we aim to
address this discrepancy through fine-tuning via data aug-
mentation.

2. Related Work
2.1. Crowded Object Detection in Computer Vision

There have been many studies on improving the per-
formance of CNN models for object detection in crowded
scenarios. For instance, the majority of models use Non-
Maximum Supression (NMS) to deal with crowding in
models as done in Luo et al [5]. However, this relies on sim-
plifying the input data and is not accurate for counting pur-
poses. These models also tend to suffer from a high false-
positive rate. Other models that aim to improve robustness
for crowded detection use a different loss function called fo-
cal loss to place less importance for foreground detections
[4]. These models, however reveal that this loss function
aids most in class disparity, and our problem does not in-
volve classification. A recent adjustment to CNN models
for crowding was introduced by Deng et al [1], who intro-
duced a copy-paste algorithm for data augmentation that led
to an improvement all standard performance metrics for hu-
man detection. The algorithm is as follows:

• Define a set C of group centers C =
{(x1, y1, s1), . . . , (x|C|, y|C|, s|C|)}, where
(xi, yi) are the coordinates and si is the
normalized object size.

• The group number |C| is randomly sampled from
the range [0, N ], where N is a predefined hyper-
parameter.



• Group centers are selected by sampling from the
original objects in the image.

• For each group center ci ∈ C, generate a group
Ĝi of objects:

Ĝi = {(x1, y1, s1), . . . , (x|Ĝi|, y|Ĝi|, s|Ĝi|)}.

• The number of objects |Ĝi| in each group is ran-
domly sampled from the range [0,M ], where M
is another hyperparameter.

• Enforce overlapping between each object gij ∈
Ĝi and its corresponding group center ci.

• To simulate realistic crowdedness:

• Object sizes in a group follow a Gaussian
distribution:

p(sj |si, I) =
1√
2πσ2

exp

(
− (sj − si)

2

2σ2

)
,

where σ = 0.2 is a fixed standard deviation.

• Coordinates x and y are sampled from uni-
form distributions around the group center
(xi, yi):

xj ∼ U(xi − τdw, xi + τdw)

yj ∼ U(yi − εdh, yi + εdh),

where dw and dh are maximum allowable
displacements, and τ > 1 and ε > 1 con-
trol the degree of crowdedness.

We make significant adjustments to this algorithm for the
development of our novel model for fish detection as will
be discussed in 4.2.

2.2. Simulated Annealing

Simulated annealing is a probabilistic algorithm that op-
timizes by traversing from local minima with a small prob-
ability [6]. While the algorithm presented in future sections
for our data augmentation does not actually use simulated
annealing, many of its features are shared with simulated
annealing algorithms (the small probability that a mask im-
age will be further away from a center point). Thus, the
algorithm is designed so that the model created from the
CNN is robust to distinct patterns of fish clustering with our
limited dataset.

3. Dataset Preparation

3.1. DeepFish Dataset

The DeepFish dataset [2] provided us with data for seg-
mentation, localization (detection) and classification, and
also provided a predetermined split for train, test, and vali-
dation data for each of the categories.

Because the localization set had no predetermined an-
notations for data bounding boxes, for the sake of time we
used the Segmentation data set because they included masks
for the train and the validation data. Thus, we generated the
bounding box using cv2’s connected-components function,
and generated .txt files based on the bounding box accord-
ing to syntax of YOLOv10. A vizualization of this genera-
tion is below:

Figure 1: Bounding Box generated from a validation set
segmentation mask

3.2. Data Augmented- DeepFish

The original model was not robust to crowding in some
of the images in our test set. Thus, we implemented the data
augmentation algorithm relayed in Section 4.

For the updated model, our base images were sourced
from the original training set. Moreover, using the mask set,
we were able to make a clean cut of the fish in our training
set for random selection in a different folder for random
segment generation. An example of one of the augmented
images is shown below:

3.3. Live-Stream Test Data

We collected 50 test images from a live-stream of nat-
ural fish habitats from a dock in Key West [source to link
of youtube livestream], annotating these manually for ob-
ject detection evaluation through RoboFlow. Notably, this
dataset includes dense fish populations, which are underrep-
resented in DeepFish’s training data.
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Figure 2: Training image constructed using adjusted Copy-
Paste algorithm. Copy-pasted fish with augmented yellow-
green color are a result of algorithm used for improved
training.

Figure 3: Second training batch for PSADA model training
run on DeepFish dataset.

4. Proposed Method

For our baseline model we trained for 50 epochs, and
each image was of size 640x640. For our second improved
PSADA model, we trained for 28 epochs due to compute
constraints and each image was of size 640x640.

4.1. YOLO-Based Fish Detection

We trained a YOLOv10 object detection model [3] using
the DeepFish bounding box annotations that were derived
from provided DeepFish segmentation masks (see Figure
1). We used these provided black and white segmentation
masks to estimate bounding boxes in green.

4.2. Psuedo-Simulated Annealing Data Augmenta-
tion Algorithm

Inspired by Deng’s[1] image detection with humans
using COCO [reference to what coco is], we implemented a
modified optimization algorithm to improve predictions of
bounding boxes in crowded scenarios that took up a large
portion of our test data. Our novel algorithm is as follows,
with our changes from the algorithm from Deng in bolded
text.

• Define a set C of group centers C =
{(x1, y1, s1), . . . , (x|C|, y|C|, s|C|)}, where
(xi, yi) are the coordinates and si is the
normalized object size.

• The group number |C| is sampled from a Pois-
son distribution with parameter λ = 3, instead
of a uniform range [0, N ], where N is a prede-
fined hyperparameter.

• Group centers are selected by random sampling
of coordinates within the base image dimen-
sions, not directly from existing objects.

• For each group center ci ∈ C, generate a group
Ĝi of objects:

Ĝi = {(x1, y1, s1), . . . , (x|Ĝi|, y|Ĝi|, s|Ĝi|)}.

• The number of objects |Ĝi| in each group is ran-
domly sampled from the range [1,M ′], where
M ′ is proportional to M/|C|, ensuring a bal-
anced object distribution across groups.

• Enforce overlapping between each object gij ∈
Ĝi and its corresponding group center ci using
a simulated annealing approach for optimal
placement.

• To simulate realistic crowdedness:

• Object sizes in a group follow a Gaussian
distribution:

p(sj |si, I) =
1√
2πσ2

exp

(
− (sj − si)

2

2σ2

)
,

where σ is a fixed standard deviation. In the
adjusted implementation, σ = 30 (pixel
units) instead of σ = 0.2 as a normalized
value.

• Coordinates x and y are refined iteratively
using simulated annealing, starting from
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uniform sampling around the group center
(xi, yi) with displacements:

xj ∼ U(xi−τdw, xi+τdw), yj ∼ U(yi−εdh, yi+εdh),

where dw and dh are maximum allowable
displacements. The degree of crowdedness
is controlled via hyperparameters τ and ε,
and placement temperature T decays geo-
metrically over iterations:

T ← T · γ, γ = 0.95.

4.2.1 Justification of Algorithm Adjustments

Initially, we used a Poisson distribution to pick the number
of center points (and thus number of groups) that are in
the model. It was not feasible for us to pick the number
of groups based on the number of objects in the image,
because a large number of the training images had no fish.
Additionally, the mode number of fish in a training image
was one. Our method differs from the work of Deng et
al. specifically because of this discrepancy – we don’t
only lack clustering, but we lack multiple-object images
in our training and validation data. Thus, if we wanted to
introduce our neural network to clustering in the training
set, particularly multiple clusters per image, we needed
to pick a distribution. There is not much literature on the
statistical modeling of animal groupings, so we made the
choice to model the number of group centers with a Poisson
distribution, which is often used for time series data. Each
image is a snapshot into the natural environment of fish, so
we can interpret the probabilistic model as the number of
fish schools swimming in the area of the camera at some
given time-interval.

Because we are not choosing groups based off of
original images, naturally we will random sample the group
centers via a uniform distribution.

Moreover we modify the algorithm for picking neigh-
bors of the center image with a simulated annealing-style
algorithm whose acceptance function is a negative expo-
nential function based on initial temperature γ. This choice
allowed us to keep our CNN robust to images with both in-
dividual fish and fish groupings. Initially, the probability of
the image being far away from its center point is high, and
with every new fish pasted to the image, this probability
decreases. Thus, we are left with varied images with both
dense objects and lone objects, as shown in Figure 2.

5. Experimental Results
5.1. Training and Evaluation

We trained two models:

1. Baseline YOLOv10 model on the original DeepFish
dataset. (what we are calling our ”base model”)

2. YOLOv10 model with pseudo-simulated annealing
data augmented algorithm and training on DeepFish
and 500 additional images. (what we are calling our
”PSADA model”). This is described by the algorithm
in section 4.2.

Training results are summarized in Figure 4(a) and (b).
Observe for both models that training box loss decreased
significantly from roughly 3.0 to 1.5 for both models, but
PSADA reached this box loss minimum in less training
time. We see the same trends for classification loss and dis-
tribution focal loss. Precision and recall increase for both,
and we see analogous trends for similar decreasing losses
for the validation as well. Notably, mAP50 and mAP50-
95 reached up to 0.8 and 0.7 respectively for PSADA at
a much faster rate than the baseline model. Other notable
observations of training metrics include the validation boss
loss oscillations for PSADA compared with more consistent
declines in box loses for baseline, but this does not appear
to affect the model performance later on. Furthermore, in
the baseline model, all loss metrics increase for the first 10
epochs before a loss decrease begins, but this does not occur
for PSADA.

5.2. Results

The final results of this paper are the testing our Base-
line YOLO model and our PSADA YOLO model on the
detection in our novel Florida fish dataset from Florida
Keys livestream data. Upon running our models on set of
Florida fish images, a set of bounding boxes were outputted
that estimated the expected location of a fish. We counted
the number of such bounding boxes relative to the ground
truth bounding boxes from our manual annotations and ulti-
mately calculated the number of detected fish by both mod-
els compared to ground truth. These results are depicted
in Figure 7. On average, PSADA was able to detect more
than double the fish in the Florida dataset than our base-
line YOLO model. Compared with the ground truth fish
count, on average the baseline model detected less than a
quarter of fish, whereas the PSADA detected nearly half of
the ground truth count. The difference in this fish count via
bounding boxes is displayed in Figure 5, in which PSADA
is able to detect a high proportion of crowded fish compared
with poor detection of any fish in crowded schools by the
baseline model. Qualitatively we observed that both mod-
els performed well when fish were isolated in uncrowded
environments. Furthermore, to quantitatively compare the
performance of our two models on the Florida keys dataset,
we calculated Intersection over Union (IoU) scores to de-
termine how well each model accurately detected the boxed
location of the fish on average. We display the IoU dis-
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(a) Base model training results for 50 epochs.

(b) PSADA model training results for 28 epochs.

Figure 4: Training results for both models. From left to
right, starting at the top row: (1) training box loss, (2)
training classification loss, (3) training distribution focal
loss (DFL), (4) precision (metrics/precision), and (5) re-
call (metrics/recall). The bottom row shows: (6) valida-
tion box loss, (7) validation classification loss, (8) valida-
tion DFL loss, (9) mean Average Precision at IoU threshold
0.5 (mAP50), and (10) mean Average Precision over IoU
thresholds from 0.5 to 0.95 (mAP50-95).

tribution in Figure 6 comparing our baseline and PSADA
models. This score quantifies the overlap between the pre-
dicted bounding box with the ground truth bounding boxes,
and we observe that the overlap distribution is more skewed
left for the PSADA model with a larger proportion of higher
IoU scores than baseline.

6. Conclusion

We presented a novel YOLO-based fish detection model
tailored for real-world natural habitats, addressing chal-
lenges of variable lighting, water conditions, and crucially,
dense fish populations. By generating bounding boxes from
DeepFish segmentation masks and integrating a simulated
annealing-based optimization algorithm, we achieved sig-
nificant improvements in crowded object detection from
our baseline. Our results demonstrate the efficacy of our
method, particularly on live-streamed fish habitat data. This
project was limited by the training constraints of Google
Colab and by constraints in access to GPUs and compute.
We believe that future work in using more GPU-intensive

training for the PSADA algorithm could yield improved re-
sults. Furthermore, even though our PSADA model was
significantly better than the baseline YOLO model at de-
tecting fish in the Florida keys dataset, it still missed al-
most half of the fish present from our manual annotations
as demonstrated by Figure 7. There are various possibilities
for this aside from training time. First, the DeepFish dataset

(a) Base model performance on Florida Keys image of
crowded fish from formal model testing run.

(b) PSADA model performance on Florida Keys image of
crowded fish from formal model testing run.

Figure 5: Our annealing-based data augmentation algo-
rithm model, the PSADA model, (b) outperforms our base-
line model (a) in detecting crowded fish and fish in unpre-
dictable natural environments.

on which we trained is a dataset of Australian fish, which
are not the same species in our Florida keys dataset. For
example, in the DeepFish dataset the fish tend to be sim-
ilar in size and features, whereas the Florida keys dataset
that we generated included sharks and barracuda fish that
were sometimes missed by our model. Second, DeepFish
dataset rarely included images of crowded fish and typically
most images displayed only one or two fish with little to no
crowding from our qualitative assessment, so training on
this dataset and subsequently testing on a highly crowded
fish dataset such as the Florida keys made it difficult for
PSADA to detect all fish. As can be seen in Figure 5, though
PSADA significantly improved in detection of crowded fish
from our baseline, but due to the high volume of fish in
certain crowded environments, PSADA was unable to de-
tect fish in certain areas of maximal crowding such as the
bottom left of Figure 5(b). Future work in fine tuning our
model and further testing of possible augmentations to our
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algorithm is another next step. Lastly, adding a classifica-
tion element to the training of PSADA for the identification
of different fish species in crowded environments is an area
of future research that could be immensely beneficial for
ecological researchers studying fish counts and marine and
coral health.

7. Author Notes
We as authors of this paper affirm here that we split the

research and writing for this report evenly and collaborated
successfully throughout the duration of the report. Addi-
tionally, we are considering publishing this work upon fur-
ther model training and would appreciate feedback on how
to improve our paper for submission to a journal. We further
would like to acknowledge and thank Professor Zickler for
his inspiring instruction on computer vision and feedback
on this project.

We sourced our live Florida keys fish data from images
taken of the Viva The Keys publically available underwater
live camera found at this link here which regularly changes
in setting, angle, lighting and displayed fish populations in
the Florida Keys.

Figure 6: IoU distribution for Base model and PSADA
model on Florida Keys Dataset predicted fish bounding
boxes vs. ground truth bounding boxes.
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